Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3972843.v1

ABSTRACT

This year-long research analysed emerging risks in influent, effluent wastewaters and biosolids from six wastewater treatment plants in Spain's Valencian Region. Specifically, it focused on human enteric and respiratory viruses, bacterial and viral faecal contamination indicators, extended spectrum beta-lactamases-producing Escherichia coli and antibiotic resistance genes. Additionally, particles and microplastics in biosolid and wastewater samples were assessed. Human enteric viruses were prevalent in influent wastewater, with limited post-treatment reduction. Wastewater treatment effectively eliminated respiratory viruses, except for low levels of SARS-CoV-2 in effluent and biosolid samples, suggesting minimal public health risk. Antibiotic resistance genes and microplastics were persistently found in effluent and biosolids, thus indicating treatment inefficiencies and potential environmental dissemination. This multifaced research sheds light on diverse contaminants present after water reclamation, emphasizing the interconnectedness of human, animal, and environmental health in wastewater management. It underscores the need for a One Health approach to address the United Nations Sustainable Development Goals.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.19.22280084

ABSTRACT

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n=312) from 24 different wastewater treatment plants were obtained between May 9 (week 22_19) and August 4 (week 22_31), 2022. Following concentration of viral particles by flocculation, a qPCR procedure allowed us to detect MPXV DNA in 63 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 per 103 to 8.7 per 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.27.21257918

ABSTRACT

Background: Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2, become dominant in several European countries raising great concern. Aim: The aim of this study was to develop a duplex real-time RT-qPCR assay to detect, discriminate and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the HV69/70 deletion, to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). Results: B.1.1.7 variant was first detected in sewage from the Southern city of Malaga (Andalucia) in week 20_52, and multiple introductions during Christmas holidays were inferred in different parts of the country, earlier than clinical epidemiological reporting by the local authorities. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from WWTPs which reached B.1.1.7 prevalences higher than 90% for at least 2 consecutive weeks showed that 8.1+/-1.8 weeks were required for B.1.1.7 to become dominant. Conclusion: The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern (VOCs) as soon as they are identified by clinical sequencing, and its integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21253818

ABSTRACT

Background: Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. Methods: We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. Findings: We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. Interpretation: The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum. Fundings: This work was supported by Spanish Scientific Research Council (CSIC), Generalitat Valenciana, and MICINN co-founded by AEI/FEDER, UE.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.08.21251355

ABSTRACT

The use of SARS-CoV-2 metagenomics in wastewater can allow the detection of variants circulating at community level. After comparing with clinical databases, we identified three novel variants in the spike gene, and six new variants in the spike detected for the first time in Spain. We finally support the hypothesis that this approach allows the identification of unknown SARS-CoV-2 variants or detected at only low frequencies in clinical genomes.

SELECTION OF CITATIONS
SEARCH DETAIL